The Network on Chip (NoC) paradigm was introduced as a scalable communication infrastructure for future System-on-Chip applications. Designing application specific customized communication architectures is critical for obtaining low power, high performance solutions. Two significant design automation problems are the creation of an optimized configuration, given application requirement the implementation of this on-chip network. Automating the design of on-chip networks requires models for estimating area and energy, algorithms to effectively explore the design space and network component libraries and tools to generate the hardware description. Chip architects are faced with managing a wide range of customization options for individual components, routers and topology. As energy is of paramount importance, the effectiveness of any custom NoC generation approach lies in the availability of good energy models to effectively explore the design space. This thesis describes a complete NoC synthesis ???ow, called NoCGEN, for creating energy-efficient custom NoC architectures. Three major automation problems are addressed: custom topology generation, energy modeling and generation. An iterative algorithm is proposed to generate application specific point-to-point and packet-switched networks. The algorithm explores the design space for efficient topologies using characterized models and a system-level ???oorplanner for evaluating placement and wire-energy. Prior to our contribution, building an energy model required careful analysis of transistor or gate implementations. To alleviate the burden, an automated linear regression-based methodology is proposed to rapidly extract energy models for many router designs. The resulting models are cycle accurate with low-complexity and found to be within 10% of gate-level energy simulations, and execute several orders of magnitude faster than gate-level simulations. A hardware description of the custom topology is generated using a parameterizable library and custom HDL generator. Fully reusable and scalable network components (switches, crossbars, arbiters, routing algorithms) are described using a template approach and are used to compose arbitrary topologies. A methodology for building and composing routers and topologies using a template engine is described. The entire flow is implemented as several demonstrable extensible tools with powerful visualization functionality. Several experiments are performed to demonstrate the design space exploration capabilities and compare it against a competing min-cut topology generation algorithm.
Identifer | oai:union.ndltd.org:ADTP/242695 |
Date | January 2007 |
Creators | Chan, Jeremy, Computer Science & Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. School of Computer Science and Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Jeremy Chan, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0271 seconds