Van der Waerden's theorem asserts that if you color the natural numbers with, say, five different colors, then you can always find arbitrarily long sequences of numbers that have the same color and that form an arithmetic progression. Szemerédi's theorem generalizes this statement and asserts that every subset of natural numbers with positive density contains arithmetic progressions of arbitrary length.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:16816 |
Date | 23 November 2017 |
Creators | Zirnstein, Heinrich-Gregor |
Contributors | Thom, Andreas, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:15-qucosa2-163403, qucosa:16340 |
Page generated in 0.0014 seconds