Return to search

Algorithms for streaming graphs

Für einen Algorithmus zum Lösen eines Graphenproblems wird üblicherweise angenommen, dieser sei mit wahlfreiem Zugriff (random access) auf den Eingabegraphen G ausgestattet, als auch mit einem Arbeitsspeicher, der G vollständig aufzunehmen vermag. Diese Annahmen erweisen sich als fragwürdig, wenn Graphen betrachtet werden, deren Größe jene konventioneller Arbeitsspeicher übersteigt. Solche Graphen können nur auf externen Speichern wie Festplatten oder Magnetbändern vorrätig gehalten werden, auf denen wahlfreier Zugriff sehr zeitaufwändig ist. Um riesige Graphen zu bearbeiten, die auf externen Speichern liegen, hat Muthukrishnan 2003 das Modell eines Semi-Streaming Algorithmus vorgeschlagen. Dieses Modell beschränkt die Größe des Arbeitsspeichers und verbietet den wahlfreien Zugriff auf den Eingabegraphen G. Im Gegenteil wird angenommen, die Eingabe sei ein Datenstrom bestehend aus Kanten von G in beliebiger Reihenfolge. In der vorliegenden Dissertation entwickeln wir Algorithmen im Semi-Streaming Modell für verschiedene Graphenprobleme. Für das Testen des Zusammenhangs und der Bipartität eines Graphen, als auch für die Berechnung eines minimal spannenden Baumes stellen wir Algorithmen vor, die asymptotisch optimale Laufzeiten erreichen. Es ist bekannt, dass kein Semi-Streaming Algorithmus existieren kann, der ein größtes gewichtetes Matching in einem Graphen findet. Für dieses Problem geben wir den besten bekannten Approximationsalgorithmus an. Schließlich zeigen wir, dass sowohl ein minimaler als auch ein maximaler Schnitt in einem Graphen nicht von einem Semi-Streaming Algorithmus berechnet werden kann. Für beide Probleme stellen wir randomisierte Approximationsalgorithmen im Semi-Streaming Modell vor. / An algorithm solving a graph problem is usually expected to have fast random access to the input graph G and a working memory that is able to store G completely. These powerful assumptions are put in question by massive graphs that exceed common working memories and that can only be stored on disks or even tapes. Here, random access is very time-consuming. To tackle massive graphs stored on external memories, Muthukrishnan proposed the semi-streaming model in 2003. It permits a working memory of restricted size and forbids random access to the input graph. In contrast, the input is assumed to be a stream of edges in arbitrary order. In this thesis we develop algorithms in the semi-streaming model approaching different graph problems. For the problems of testing graph connectivity and bipartiteness and for the computation of a minimum spanning tree, we show how to obtain running times that are asymptotically optimal. For the problem of finding a maximum weighted matching, which is known to be intractable in the semi-streaming model, we present the best known approximation algorithm. Finally, we show the minimum and the maximum cut problem in a graph both to be intractable in the semi-streaming model and give semi-streaming algorithms that approximate respective solutions in a randomized fashion.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16564
Date06 May 2009
CreatorsZelke, Mariano
ContributorsGrohe, Martin, Hougardy, Stefan, Meyer, Ulrich
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0022 seconds