Return to search

An integrated architecture analysis framework for component-based software development

The importance of architecture in reuse-driven development is widely recognized. Architecture provides a framework for establishing a match between available components and the system context. It is a key part of the system documentation; enforces the integrity of component composition and provides a basis for managing change. However, one of the most difficult problems in component-based system development (CBD) is ensuring that the software architecture provides an acceptable match with its intended application, business and evolutionary context. Unlike custom development where architectural design relies solely on a detailed requirements specification and where deficiencies in application context can be corrected by ‘tweaking’ the source code, in component-based system development the typical unit of development is often a black-box component whose source code is inaccessible to the developer. Getting the architecture right is therefore key to ensuring quality in a component-based system. Architecture analysis in CBD provides the developer with a means to expose interface mismatches, assess configurations with respect to specific structural and behavioural constraints and to verify the adequacy of compositions with respect to quality constraints. However, support for key component-based system design issues is still patchy in most architecture analysis approaches. My solution has been to develop, Component-based Software Architecture analysis FramEwork (CSAFE), a scenario-driven architecture analysis approach that combines and extends the strengths of current approaches using pluggable analysis. CSAFE is process- pluggable and recognises that negotiation (trade-off analysis) is central to black-box software development. However, while CSAFE is primarily intended to support black-box development, we recognise that there may be aspects of the system for which a black-box solution is not feasible. CSAFE supports custom development in such situations by treating abstract components as placeholders for custom development. CSAFE is supported by an extensible toolset.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:569495
Date January 2011
CreatorsAdmodisastro, Novia
ContributorsKotonya, Gerald
PublisherLancaster University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.lancs.ac.uk/61630/

Page generated in 0.002 seconds