In this thesis, we have dealt with several problems concerning liquid crystals (LC) phases, either in the bulk or at their interfaces, by the use of atomistic molecular dynamics (MD) simulations. We first focused our attention on simulating and characterizing the bulk smectic phase of 4-n-octyl-4'-cyanobiphenyl (8CB), allowing us to investigate the antiparallel molecular arrangement typical of SmAd smectic phases. A second topic of study was the characterization of the 8CB interface with vacuum by simulating freely suspended thin films, which allowed us to determine the influence of the interface on the orientational and positional order. Then we investigated the LC-water and LC-electrolyte water solution interface. This interface has recently found application in the development of sensors for several compounds, including biological molecules, and here we tried to understand the re-orientation mechanism of LC molecules at the interface which is behind the functioning of these sensors. The characterization of this peculiar interface has incidentally led us to develop a polarizable force field for the pentyl-cyanobiphenyl mesogen, whose process of parametrization and validation is reported here in detail. We have shown that this force field is a significant improvement over its previous, static charge non polarizable version in terms of density, orientational order parameter and translational diffusion.
Identifer | oai:union.ndltd.org:unibo.it/oai:amsdottorato.cib.unibo.it:6993 |
Date | January 1900 |
Creators | Palermo, Mattia Felice <1987> |
Contributors | Zannoni, Claudio |
Publisher | Alma Mater Studiorum - Università di Bologna |
Source Sets | Università di Bologna |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, PeerReviewed |
Format | application/pdf |
Rights | info:eu-repo/semantics/embargoedAccess |
Page generated in 0.0023 seconds