In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution.
We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Identifer | oai:union.ndltd.org:unibo.it/oai:amsdottorato.cib.unibo.it:6860 |
Date | 28 May 2015 |
Creators | Abbondanza, Beatrice <1986> |
Contributors | Lanconelli, Ermanno |
Publisher | Alma Mater Studiorum - Università di Bologna |
Source Sets | Università di Bologna |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, PeerReviewed |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0107 seconds