Return to search

Neighbour-distinguishing decompositions of graphs / Décompositions de graphes voisins-distinguantes

Dans cette thèse nous explorons différentes décompositions de graphes. Le titre de la présente thèse est dû au fait que la majorité de ces décompositions sont des décompositions voisin-distinguantes. En d'autres mots, nous pouvons en extraire des colorations propres des sommets. La question principale présentée dans cette thèse a été introduite par Karoński, Łuczak et Thomason: Est il possible de pondérer les arêtes d'un graphes avec les poids 1, 2 et 3, afin que tous les sommets voisins soient distingués par la somme des poids de leurs arêtes incidentes ? Cette question deviendra plus tard la fameuse 1-2-3 Conjecture. Nous présentons différentes variantes de la 1-2-3 Conjecture, ainsi que leurs liens avec les décompositions localement irrégulières. Nous nous intéressons tant à des problèmes d'optimisation qu'à des problèmes algorithmiques. Nous commençons par introduire une variante équitable des arête-pondérations voisin-somme-distinguantes, où chaque poids doit être utilisé le même nombre de fois (à l'unité près). Ensuite nous présentons une variante injective ou chaque poids est utilisé au plus une seule fois. Ce qui est un cas particulier de la variante équitable. De plus les pondérations injectives sont une variante locale des étiquetages anti-magiques. Ensuite nous modifions les conditions de distinction entre voisin en introduisant une variante 2-distinguante. les pondérations voisins-somme-2-distinguantes requierent que deux sommets voisins dans le graphe aient des sommes incidentes qui diffèrent d'au moins 2. Nous étudions le poids maximum minimal dans de telles pondérations pour certaines familles de graphes, ainsi que des problèmes de complexité. Dû aux liens entre les pondérations voisins-sommet-distinguantes et les décompositions localement irrégulières, nous nous sommes aussi intéressé à ces dernières, particulièrement pour les graphes sub-cubiques, ainsi qu'à d'autres variantes des décompositions localement irrégulières. Finalement nous présentons un jeu de pondérations à deux joueurs, ainsi qu'une théorie de décompositions qui unifie les pondérations voisin-somme-distinguantes et les décompositions localement irrégulières. / In this thesis we explore graph decompositions under different constraints. The title of the is due to the fact that most of these decompositions are neighbour-distinguishing. That is, we can extract from each such decomposition a proper vertex colouring. Moreover, most of the considered decompositions are edge partitions, and therefore can be seen as edge-colourings. The main question presented in this thesis is was introduced by Karoński, Łuczak and Thomason in [KLT04]: Can we weight the edges of a graph G, with weights 1, 2, and 3, such that any two of adjacent vertices of G are distinguished by the sum of their incident weights ? This question later becomes the famous 1-2-3 Conjecture. In this thesis we explore several variants of the 1-2-3 Conjecture, and their links with locally irregular decompositions. We are interested in both optimisation results and algorithmic problems. We first introduce an equitable version of the neighbour-sum- distinguishing edge-weightings, that is a variant where we require every edge weight to be used the same number of times up to a difference of 1. Then we explore an inject- ive variant where each edge is assigned a different weight, which yields necessarily an equitable weighting. This gives us first general upper bounds on the equitable version. Moreover, the injective variant is also a local version of the well-known antimagic la- belling. After that we explore how neighbour-sum-distinguishing weightings behave if we require sums of neighbouring vertices to differ by at least 2. Namely, we present results on the smallest maximal weight needed to construct such weightings for some classes of graphs, and study some algorithmic aspects of this problem. Due to the links between neighbour-sum-distinguishing edge weightings and locally irregular decompositions, we also explore the locally irregular index of subcubic graphs, along with other variants of the locally irregular decomposition problem. Finally, we present a more general work to- ward a general theory unifying nsd edge-weightings and locally irregular decompositions. We also present a 2-player game version of neighbour-sum-distinguishing edge-weightings and exhibit sufficient conditions for each player to win the game.

Identiferoai:union.ndltd.org:theses.fr/2018BORD0138
Date14 September 2018
CreatorsSenhaji, Mohammed
ContributorsBordeaux, Sopena, Eric, Baudon, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds