In this thesis we investigate 1-skeleta and their associated cohomology rings. 1-skeleta arise from the 0- and 1-dimensional orbits of a certain class of manifold admitting a compact torus action and many questions that arise in the theory of 1-skeleta are rooted in the geometry and topology of these manifolds. The three main results of this work are: a lifting result for 1-skeleta (related to extending torus actions on manifolds), a classification result for certain 1-skeleta which have the Morse package (a property of 1-skeleta motivated by Morse theory for manifolds) and two constructions on 1-skeleta which we show preserve the Lefschetz package (a property of 1-skeleta motivated by the hard Lefschetz theorem in algebraic geometry). A corollary of this last result is a conceptual proof (applicable in certain cases) of the fact that the coinvariant ring of a finite reflection group has the strong Lefschetz property.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:open_access_dissertations-1206 |
Date | 01 May 2010 |
Creators | McDaniel, Chris Ray |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Open Access Dissertations |
Page generated in 0.0018 seconds