Return to search

Geometric and Combinatorial Aspects of 1-Skeleta

In this thesis we investigate 1-skeleta and their associated cohomology rings. 1-skeleta arise from the 0- and 1-dimensional orbits of a certain class of manifold admitting a compact torus action and many questions that arise in the theory of 1-skeleta are rooted in the geometry and topology of these manifolds. The three main results of this work are: a lifting result for 1-skeleta (related to extending torus actions on manifolds), a classification result for certain 1-skeleta which have the Morse package (a property of 1-skeleta motivated by Morse theory for manifolds) and two constructions on 1-skeleta which we show preserve the Lefschetz package (a property of 1-skeleta motivated by the hard Lefschetz theorem in algebraic geometry). A corollary of this last result is a conceptual proof (applicable in certain cases) of the fact that the coinvariant ring of a finite reflection group has the strong Lefschetz property.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:open_access_dissertations-1206
Date01 May 2010
CreatorsMcDaniel, Chris Ray
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0018 seconds