Return to search

Gromov-Witten Theory of Blowups of Toric Threefolds

We use toric symmetry and blowups to study relationships in the Gromov-Witten theories of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$ by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These symmetries can be forced to descend to the blowups at just points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. Enumerative consequences are discussed.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1030
Date31 May 2012
CreatorsRanganathan, Dhruv
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHMC Senior Theses
Rights© Dhruv Ranganathan, http://creativecommons.org/licenses/by-nc-sa/3.0/

Page generated in 0.0021 seconds