Return to search

Novel Superacidic Ionic Liquid Catalysts for Arene Functionalization

There is a continuing interest in the subject of arene carbonylation, especially in strong acids and environmentally-benign alternatives are sought to HF/BF3 and to AlCl3 as conversion agents. Ionic liquids offer a powerful solvent for useful conversion agents such as aluminum chloride. The ILs permit AlCl3 to be used at lower HCl partial pressures than with other solvents. The superior reactivity demonstrated by acidic, chloroaluminate ILs is probably due to their enhanced solvation power for HCl and CO. Addition of HCl gas increased reactivity of the system by forming Brnsted acids, and toluene carbonylation is a Brnsted demanding reaction. It was found that reaction is stoichiometric in Al species and only intrinsically acidic ILs are active for toluene carbonylation, therefore it was possible to correlate observed conversion with predicted amounts of Lewis + Brnsted acids. Molecular modeling provided information about the different species present in these ILs and predicted 1H NMR, and 27Al NMR spectrum. Predictions suggested that three types of HCl species are present; and these predictions were confirmed using data of 13C-labeled acetone and its 13C-NMR spectra. These data showed that only one of the three types of HCl in the IL were super acidic. Reactivity towards arene formylation can be tuned by adjusting the ligands R and R in the organic cation and by changing the anion. This reactivity tuning can be exploited in a process where high acidity is required for the conversion of substrate but where separation of product from IL is facilitated by low acidity.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7651
Date15 August 2005
CreatorsAngueira, Ernesto J.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format3490384 bytes, application/pdf

Page generated in 0.0018 seconds