Return to search

Algebraic Properties Of The Operations Used In Block Cipher Idea

In this thesis we obtain several interesting algebraic properties of the operations used in the block cipher IDEA which are important for cryptographic analyzes. We view each of these operations
as a function from $mathbb Z_{2}^n times mathbb Z_{2}^n to mathbb Z_{2}^n$. By fixing one of variables $v(z)=mathbf Z$ in $mathbb Z_{2}^n times mathbb Z_{2}^n$, we define functions $mathbf {f}_z$ and $mathbf {g}_z$ from $mathbb Z_{2}^n$ to $mathbb Z_{2}^n$ for the addition $BIGboxplus$ and the multiplication $BIGodot$ operations, respectively. We first show that the nonlinearity of
$mathbf {g}_z$ remains the same under some transformations of $z$. We give an upper bound for the nonlinearity of $mathbf {g}_{2^k}$, where $2leq k &lt / n-1$. We list all linear relations which make the nonlinearity of $mathbf {f}_z$ and $mathbf {g}_z$ zero and furthermore, we present all linear relations for $mathbf {g}_z$ having a high probability. We use these linear relations to derive many more linear relations for 1-round IDEA. We also devise also a new algorithm to find a set of new linear relations for 1-round IDEA based on known linear relations. Moreover, we extend the largest known linear class of weak keys with cardinality $2^{23}$ to two classes with cardinality $2^{24}$ and $2^{27}$.

Finally, we obtain several interesting properties of the set
$ { ({mathbf X},{mathbf X} BIGoplus {mathbf A}) in mathbb Z_2^n times mathbb Z_2^n ,|, (mathbf {X}BJoin {mathbf Z})BIGoplus( ({mathbf X} BIGoplus {mathbf A} ) BJoin mathbf {Z} ) =
{mathbf B} }$ for varying ${mathbf A}, {mathbf B}$ and ${mathbf Z}$ in $mathbb Z_2^n$, where $BJoin in { BIGodot,BIGboxplus }$. By using some of these properties, we present impossible differentials for 1-round IDEA and Pseudo-Hadamard Transform.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12608289/index.pdf
Date01 March 2007
CreatorsYildirim, Hamdi Murat
ContributorsAkyildiz, Ersan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0013 seconds