Return to search

The aeroelastic tailoring of a high aspect-ratio composite structure / Taeke Nicolai van den Bosch

The aim of this investigation was to review literature for the most suitable aeroelastic tailoring analysis tools for long slender composite structures, and integrate them into an aeroelastic tailoring process.
The JS1C Revelation is a high performance sailplane made from modern composites, mostly carbon fibre. This has the advantage of being more rigid than traditional engineering materials, thereby reducing the effects of the twisting deflections on these long slender structures due to aerodynamic loads. The implementing of aeroelastic tailoring can create bend-twist couples for performance improvements. Composites enable the use of aeroelastic tailoring to improve gliding performance. Flaperon 3 of the JS1C 21 m was used as the design problem for aeroelastic tailoring.
Aeroelastic tailoring was done by analysing the flaperon structure at the different layup angles to determine the correct design point to tailor the structure to improve aerodynamic performance at thermalling and cruise, but mostly cruise since it accounts for 70% of the flight time.
The composite structure analysis tool has the objective to get results during concept design. This directed the line of research of analysis tools to a solution method of two dimensional cross-section mesh properties projected onto a one dimensional beam. The literature of Hodges had good verification and published data on the analysis tools.
The analysis tools comprised of three programs that were not very user friendly. Thus the author compiled a Matlab program as a user interface tool to run the three programs together. The aeroelastic tailoring process systematically works through the known design variables and
objectives, which are given as inputs to the analysis tool. The analysis tool plots the coupling data versus layup angle. From this the best layup angles for a sought-after bend-twist couple is used to aeroelastically tailor the wing.
The composite structure analysis tool’s accuracy was verified by analysing cantilever beam deflections and comparing the results with hand calculations and SolidWorks Simulation FEM results. The analysis tool’s accuracy was further verified by comparing the aerodynamic torsional load’s twist deflections with thin walled tube theory.
The analysis tool was validated by applying a torsional load at the tip of a JS1C production Flaperon 3 in an experimental setup and then comparing this result with the Flaperon 3 modelled in the analysis tool. These comparisons also ensured that the model’s composite material properties and the meshing of the flaperon cross-sectional properties were correct.
This aeroelastic tailoring was validated with the advantage of then being used to improve the aerodynamic performance of the JS1C Revelation 21 m tip’s flaperon. This improvement could be made by making use of a tailored bend-twist couple to reduce the effect of the aerodynamic load’s twist deflections.
A test sample of the JS1C 21 m flaperon 3 was used to validate aeroelastic tailoring. The test sample was designed to be 1 m in length and have all the specified tailoring coupling characteristics that could improve the aerodynamic performance of the JS1C 21 m flaperon 3. The test sample was manufactured according to Jonker Sailplanes manufacturing standards and experimentally set up with the same applied deflections as in the analysis tool. The calculated bend-twist values and the experimental setup results were similar with a negligible difference, assuming small displacements and an aspect ratio greater than 13; this confirmed that the PreVABS/VABS/GEBT composite structure analysis tool could be used in aeroelastic tailoring to predict and design the bend-twist couple needed to improve the aerodynamic performance of the JS1C 21 m.
While the twist behaviour of Flaperon 3 was improved by the tailored bend-twist couple, it was still necessary to add pre-twist as well, to fully address the effects of twisting by aerodynamic forces. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/13439
Date January 2014
CreatorsVan den Bosch, Taeke Nicolai
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds