Return to search

Pd0-Catalyzed Formal 1,3-Diaza-Claisen Rearrangement. Design And Development Of Cationic 1,3-Diaza-Claisen Rearrangement.

The dissertation describes Pd0-catalyzed formal 1,3-diaza-Claisen rearrangement and the design and development of cationic 1,3-diaza-Claisen rearrangement.
Our previous work has shown that isocyanates react with azanorbornenes and azabicyclo[2.2.2]octenes under thermal conditions to afford zwitterionic intermediates that undergo a thermal 1,3-diaza-Claisen rearrangement to give both ureas and isoureas. However, some azanorbornenes and azabicyclooctenes failed to rearrange or proceeded in low yields. To address these challenging substrates for the thermal 1,3-diaza-Claisen rearrangement, we have developed a Pd0-catalyzed formal 1,3-diaza-Claisen rearrangement. Interestingly, under Pd0-catalyzed condition, both isocyanates with electron-withdrawing groups and isocyanates without electron-withdrawing groups react with azanorbornenes and azabicyclo[2.2.2]octenes to provide ureas as the only products in high yields. More importantly, the reactions that failed under thermal conditions were all successful under Pd0-catalysis. In addition to azanorbornenes and azabicyclo[2.2.2]octenes, other ring systems were also investigated. Pd0 catalysis has broadened the scope of tertiary allylic amines that react with isocyanates to afford 1,3-diaza-Claisen rearrangement products.
In the presence of p-TsCl and NEt3, allylaminopropyl benzyl ureas were initially dehydrated to form protonated carbodiimides whose presence was confirmed by the infrared absorption frequency at 2100 cm-1 which is the characteristic band of -N=C=N-; then the in situ generated protonated carbodiimides were poised for further cationic 1,3-diaza-Claisen rearrangement to afford synthetically challenging guanidines. The effect of acid on the rearrangement was ascertained by the fact that no rearrangement product was observed by simply heating free base carbodiimide 3.10 in benzene at reflux. Other dehydration reagents, such as Tf2O, Ts2O, MsCl were also investigated, and none of them provide satisfactory results. A selection of allyamino benzyl ureas with different tether length, substituents, or in varied ring systems, were synthesized to explore the scope of this methodology. This methodology works best at allylaminopropyl benzyl ureas, and the substituents on the benzyl group does not seem to affect the reaction rate in a significant way.

Identiferoai:union.ndltd.org:uvm.edu/oai:scholarworks.uvm.edu:graddis-1260
Date01 January 2014
CreatorsYang, Yanbo
PublisherScholarWorks @ UVM
Source SetsUniversity of Vermont
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate College Dissertations and Theses

Page generated in 0.002 seconds