MicroRNAs (miRNAs) are endogenous non-coding small RNAs that posttranscriptionally regulate gene expression primarily through binding to the 3’ untranslated region (3’UTR) of target mRNAs, and are known to play important roles in various developmental and physiological processes. The work presented in this thesis was centered on understanding how Caenorhabditis elegans miRNAs are modulated by genetic, environmental, or physiological factors and how these small RNAs function to maintain the robustness of developmental processes under stressful conditions.
To identify modulators of the miRNA pathway, I developed sensitized genetic backgrounds that consist of a panel of miRNA gene mutants and miRNA biogenesis factor mutants with partially penetrant phenotypes. First, I found that upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an opportunistic pathogen of diverse plants and animals, let-7 family miRNAs are engaged in reciprocal regulatory interactions with the p38 MAPK innate immune pathway to maintain robust developmental timing despite the stress of pathogen infection. These let-7 family miRNAs, along with other developmental timing regulators, are also integrated into innate immune regulatory networks to modulate immune responses. Next, I demonstrated that loss-of-function mutations of Staufen (stau-1), a double-stranded RNA-binding protein, increase miRNA activity for several miRNA families, and this negative modulation of Staufen on miRNA activity acts downstream of miRNA biogenesis, possibly by competing with miRNAs for binding to target mRNA 3’UTRs.
In summary, these studies provide a better understanding on how miRNAs are modulated by various environmental and cellular components, and further support the role of the miRNA pathway in conferring robustness to developmental processes under these perturbations.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1837 |
Date | 26 February 2016 |
Creators | Ren, Zhiji |
Publisher | eScholarship@UMassChan |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Morningside Graduate School of Biomedical Sciences Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved. |
Page generated in 0.002 seconds