In modern synthetic organic chemistry, chemists are driven to develop efficient methods for important C-C and C-N bond formation reactions. The challenge lies with establishing new uses for readily available substrates. In this regard, the synthesis of β-aminocarbonyl compounds from alkenes remains a long-standing challenge. Innovation in reaction discovery often requires finding new reagents, or rare reagents with underappreciated value in synthesis. In Chapter 1, N-isocyanates and other heterocumulenes are introduced as versatile amphoteric reagents. Their amphoteric properties are valuable in the discovery of new synthetic approaches, especially in cycloaddition reactions. While C-isocyanates are bulk industrial chemicals, the formation and reactivity of N-isocyanates remains underexplored.
Chapter 2 describes the development of reactivity with rare imino-isocyanates. This includes methods to access the reagent in situ with a blocking group approach, and the establishment of intermolecular cycloaddition reactivity with a variety of alkenes. This stereospecific reaction provides complex N,N’-cyclic azomethine imines, and enables access to β-aminocarbonyl compounds from alkenes. β-Amino amides and esters, pyrazolidinones, and pyrazolones were accessed by reductive derivatization of the aminocarbonylation products. Exploration into the limits of this reactivity gave insight into fundamental properties of imino-isocyanates. This includes the first detection of imino-isocyanates by IR spectroscopy.
A kinetic resolution of the azomethine imines obtained from this alkene aminocarbonylation reaction was then developed, which gave access to enantioenriched β-amino carbonyl compounds (Chapter 3). This was accomplished by Brønsted acid catalysed reduction, with a selectivity factor of 13-43. This was the first example of the enantioselective reduction of azomethine imines, and represents a new activation mode for reactions of N,N’-cyclic azomethine imines. Using this reductive method, both enantiomers of the β-amino amide could be obtained from a racemic azomethine imine in ≥ 97% ee.
The discovery of new reactivity of imino-isocyanates with imines in described in Chapter 4, which allowed the synthesis of eight new azomethine imines with the triazolone core. Our initial scope studies revealed different trends with imines than with alkenes, including increased reactivity, which led to investigation of the mechanism of this reaction. In addition, this was shown to be a valuable new approach for the synthesis of triazolones from imines.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35698 |
Date | January 2017 |
Creators | Bongers, Amanda L. |
Contributors | Beauchemin, André M. |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0023 seconds