The era of selective neurotoxins arose predominately in the 1960s with the discovery of the norepinephrine (NE) isomer 6-hydroxydopamine (6-OHDA), which selectively destroyed noradrenergic sympathetic nerves in rats. A series of similarly selective neurotoxins were later discovered, having high affinity for the transporter site on nerves and thus being accumulated and able to disrupt vital intraneuronal processes, to lead to cell death. The Trojan Horse botulinum neurotoxins (BoNT) and tetanus toxin bind to glycoproteins on the neuronal plasma membrane, then these stealth neurotoxins are taken inside respective cholinergic or glycinergic nerves, producing months-long functional inactivation but without overtly destroying those nerves. The mitochondrial complex I inhibitor rotenone, while lacking total specificity, still destroys dopaminergic nerves with some selectivity; and importantly, results in the neural accumulation of synuclein-to model Parkinson’s disease (PD) in animals. Other neurotoxins target specific subtypes of glutamate receptors and produce excitotoxicity in nerves with that receptor population. The dopamine D2 receptor agonist quinpirole, termed a selective neurotoxin, produces a behavioral state replicating some of the notable features of schizophrenia, but without overtly destroying nerves. These processes, mechanisms or treatment-outcomes account for the means by which neurotoxins are classified as such, and represent some of the means by which neurotoxins as a group are able to destroy or functionally inactivate nerves; or replicate an altered neurological state. Selective neurotoxins have proven to be important in gaining insight into biochemical processes and mechanisms responsible for survival or demise of a nerve. Selective neurotoxins are useful also for animal modeling of human neural disorders such as PD, Alzheimer disease, attention-deficit hyperactivity disorder (ADHD), Lesch-Nyhan disease, tardive dyskinesia, schizophrenia and others. The importance of neurotoxins in neuroscience will continue to be ever more important as even newer neurotoxins are discovered.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-16342 |
Date | 01 January 2016 |
Creators | Kostrzewa, Richard M. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0023 seconds