Return to search

Modular Multilevel Converter Control for HVDC Operation : Optimal Shaping of the Circulating Current Signal for Internal Energy Regulation / Commande adaptée pour le convertisseur modulaire multiniveaux pour les liaisons à courant continues

Dans le cadre du programme de croissance Européen 2020, la commission européenne a mis en place officiellement un chemin à long terme pour une économie à faible émission de carbone, en aspirant une réduction d’au moins 80% des émissions de gaz à effet de serre, d’ici 2050. Répondre à ces exigences ambitieuses, impliquera un changement majeur de paradigme, et notamment en ce qui concerne les infrastructures du réseau électrique. Les percées dans la technologie des semi-conducteurs et les avancées avec les nouvelles topologies d’électronique de puissance et leurs contrôle-commandes, ont contribué à l’impulsion donnée au processus en cours de réaliser un tel SuperGrid. Une percée technologique majeure a eu lieu en 2003, avec le convertisseur modulaire multi-niveaux (MMC ou M2C), présenté par le professeur Marquardt, et qui est actuellement la topologie d’électronique de puissance la plus adaptée pour les stations HVDC. Cependant, cette structure de conversion introduit également un certain nombre de défis relativement complexes tels que les courants “additionnels” qui circulent au sein du convertisseur, entrainant des pertes supplémentaires et un fonctionnement potentiellement instable. Ce projet de thèse vise à concevoir des stratégies de commande “de haut niveau” pour contrôler le MMC adaptées pour les applications à courant continue-haute tension (HVDC), dans des conditions de réseau AC équilibrés et déséquilibrés. La stratégie de commande optimale identifiée est déterminée via une approche pour la conception du type “de haut en bas”, inhérente aux stratégies d’optimisation, où la performance souhaitée du convertisseur MMC donne la stratégie de commande qui lui sera appliquée. Plus précisément, la méthodologie d’optimisation des multiplicateurs de Lagrange est utilisée pour calculer le signal minimal de référence du courant de circulation du MMC dans son repère naturel. / Following Europe’s 2020 growth program, the Energy Roadmap 2050 launched by the European Commission (EC) has officially set a long term path for a low-carbon economy, assuming a reduction of at least 80% of greenhouse gas emissions by the year 2050. Meeting such ambitious requirements will imply a major change in paradigm, including the electricity grid infrastructure as we know it.The breakthroughs in semi-conductor technology and the advances in power electronics topologies and control have added momentum to the on-going process of turning the SuperGrid into a reality. Perhaps the most recent breakthrough occurred in 2003, when Prof. Marquardt introduced the Modular Multilevel Converter (MMC or M2C) which is now the preferred power electronic topology that is starting to be used in VSC-HVDC stations. It does however, introduce a number of rather complex challenges such as “additional” circulating currents within the converter itself, causing extra losses and potentially unstable operation. In addition, the MMC will be required to properly balance the capacitive energy stored within its different arms, while transferring power between the AC and DC grids that it interfaces.The present Thesis project aimed to design adequate “high-level” MMC control strategies suited for HVDC applications, under balanced and unbalanced AC grid conditions. The resulting control strategy is derived with a “top-to-bottom” design approach, inherent to optimization strategies, where the desired performance of the MMC results in the control scheme that will be applied. More precisely, the Lagrange multipliers optimization methodology is used to calculate the minimal MMC circulating current reference signals in phase coordinates, capable of successfully regulating the capacitive arm energies of the converter, while reducing losses and voltage fluctuations, and effectively decoupling any power oscillations that would take place in the AC grid and preventing them from propagating into the DC grid.

Identiferoai:union.ndltd.org:theses.fr/2015SUPL0017
Date03 July 2015
CreatorsBergna Diaz, Gilbert
ContributorsSupélec, Norwegian university of science and technology (Trondheim, Norvège), Vannier, Jean-Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds