Return to search

Product and process innovations by means of rapid technologies

Published Article / Over the past few years, methods of layered manufacturing (LM) have advanced substantially to the point where they now provide vital strategic benefits to various organisations. One area of application where LM technologies have begun to reach a critical mass is in the development and production of high-performance tooling in different forming processes. With these tooling capabilities now available, the next challenge becomes the development of optimal process chains to minimise lead times and production costs, while still ensuring high quality of castings. The relevant issues that influence where a break-even point will be between different process chains and thereby also the point of selection between such optimal process chains according to different situations include among others: <ul> <li> the size of production runs, </li> <li> part size and complexity, and</li> <li> the cast materials involved.</li> </ul> <br>This paper reflects some of the experiences gained from an investigation towards developing a set of generic rules (guidelines) for the design of optimal process chains for sand casting prototypes of automotive components using LM methods, and more specifically the 3D Printing process.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cut/oai:ir.cut.ac.za:11462/487
Date January 2006
CreatorsDimitrov, D., De Beer, N., Centner, T.
ContributorsCentral University of Technology, Free State, Bloemfontein
PublisherJournal for New Generation Sciences, Vol 4, Issue 1: Central University of Technology, Free State, Bloemfontein
Source SetsSouth African National ETD Portal
Languageen_US
Detected LanguageEnglish
TypeArticle
Format118 930 bytes, 1 file, Application/PDF
RightsCentral University of Technology, Free State, Bloemfontein
RelationJournal for New Generation Sciences;Vol 4, Issue 1

Page generated in 0.0025 seconds