This work explores machine learning as a tool for medical images' classification. A literary research is contained concerning both classical and modern approaches to image segmentation. The main purpose of this work is to design and implement an extension for the 3D Slicer platform. The extension uses machine learning to classify images using set parameters. The extension is tested on tomographic images obtained by nuclear magnetic resonance and observes the accuracy of the classification and usability in practice.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:316852 |
Date | January 2017 |
Creators | Chalupa, Daniel |
Contributors | Jakubíček, Roman, Mikulka, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds