Return to search

Human Facial Animation Based on Real Image Sequence

How to efficiently and relistically generate 3D human face models is a very interesting and difficult problem in computer graphics. animated face models are essential to computer games, films making, online chat, virtual presence, video conferencing, etc. As the progress of computer technology, people request for more and more multimedia effects. Therefore, construct 3D human face models and facial animation are enthusiastically investigated in recent years.
There are many kinds of method that used to construct 3D human face models. Such as laser scanners and computer graphics. So far, the most popular commercially available tools have utilized laser scanners. But it is not able to trace moving object. We bring up a technique that construct 3D human face model based on real image sequence. The full procedure can be divided into 4 parts. In the first step we use two cameras take picture con human face simultaneously. By the distance within two cameras we can calculate the depth of human face and build up a 3D face model. The second step is aimed at one image sequence which is taken by the same camera. By comparing the feature poins on previous image afterward image we can get the motion vector of human face. Now we can construct a template of animated 3D face model. After that we can map any kind of 2D new character image into the template, then build new character's animation. The full procedure is automatic. We can construct exquisite human facial animation easily.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0724101-163439
Date24 July 2001
CreatorsYeh, Shih-Hao
ContributorsYun-Lung Chang, Jung-Jae Chao, John Y. Chiang, Innchyn Her
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0724101-163439
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0023 seconds