Return to search

Multi-Modal Learning for Abdominal Organ Segmentation / Multimodalt lärande för segmentering av bukorgan

Deep Learning techniques are widely used across various medical imaging applications. However, they are often fine-tuned for a specific modality and are not generalizable when it comes to new modalities or datasets. One of the main reasons for this is large data variations for e.g., the dynamic range of intensity values is large across multi-modal images. The goal of the project is to develop a method to address multi-modal learning that aims at segmenting liver from Computed Tomography (CT) images and abdominal organs from Magnetic Resonance (MR) images using deep learning techniques. In this project, a self-supervised approach is adapted to attain domain adaptation across images while retaining important 3D information from medical images using a simple 3D-UNet with a few auxiliary tasks. The method comprises of two main steps: representation learning via self-supervised learning (pre-training) and fully supervised learning (fine-tuning). Pre-training is done using a 3D-UNet as a base model along with some auxiliary data augmentation tasks to learn representation through texture, geometry and appearances. The second step is fine-tuning the same network, without the auxiliary tasks, to perform the segmentation tasks on CT and MR images. The annotations of all organs are not available in both modalities. Thus the first step is used to learn general representation from both image modalities; while the second step helps to fine-tune the representations to the available annotations of each modality. Results obtained for each modality were submitted online, and one of the evaluations obtained was in the form of DICE score. The results acquired showed that the highest DICE score of 0.966 was obtained for CT liver prediction and highest DICE score of 0.7 for MRI abdominal segmentation. This project shows the potential to achieve desired results by combining both self and fully-supervised approaches.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-285866
Date January 2020
CreatorsMali, Shruti Atul
PublisherKTH, Skolan för kemi, bioteknologi och hälsa (CBH)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2020:239

Page generated in 0.0021 seconds