Mobile phones have evolved from being devices just to make phone calls to become smartphones with added capabilities like surfing the network. Wireless communication has played a very important role in the evolution of smartphones. The work in this thesis aims to study the potential to reduce the energy consumption of the 3G communications by using a hybrid architecture. An idea first presented in the paper by Vergara and Nadjm-Tehrani [1]. This architecture consists of a group of nodes that communicate using WiFi or Bluetooth to forward their traffic using one node's 3G interface. In this thesis the named energy sharing scheme is implemented on Android mobile devices and experiments have been performed using a number of realistic traces to assess achievable gains and the energy footprint of the scheme itself. Even though communication technologies, screen features, multimedia capabilities, or processing power have been taken to the highest level, phones' batteries have not improved at the same speed. Nowadays battery lifetime has become a major issue with respect to cellular communication. With 3G communications Internet connection anytime and anywhere is provided to the terminals but this technology is optimized for peak performance whereas in underutilization it wastes a lot of energy. This makes it a big black hole from power consumption point of view when transmitting small amounts of data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-103393 |
Date | January 2014 |
Creators | Moreno Arocena, Ugaitz |
Publisher | Linköpings universitet, Institutionen för datavetenskap, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0013 seconds