Translation initiation in eukaryotes is a multistep process requiring the orchestrated interaction of several eukaryotic initiation factors (eIFs) together with the small ribosomal subunit to locate the mRNA's translational start and to properly decode the genetic message that it carries. The largest of these factors, eIF3, forms the scaffold for other initiation factors to promote their spatially coordinated placement on the ribosomal surface. It is our long-standing pursuit to map the 40S-binding site of the yeast multisubunit eIF3 and here we present three new mutual interactions between these two macromolecules (i) The C-terminal region of the eIF3c/NIP1 subunit is comprised of the conserved bipartite PCI domain and we show that a short C-terminal truncation and two clustered mutations directly disturbing the PCI domain produce lethal or slow growth phenotypes and significantly reduce amounts of 40S-bound eIF3 in vivo. The extreme C-terminus directly interacts with small subunit ribosomal protein RACK1/ASC1, which is a part of the 40S head, and, consistently, deletion of ASC1 impairs eIF3 association with ribosomes. The PCI domain per se shows strong but unspecific binding to RNA, for the first time implicating this protein fold in protein-RNA interactions. We conclude that the c/NIP1...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:329277 |
Date | January 2013 |
Creators | Kouba, Tomáš |
Contributors | Valášek, Leoš, Pospíšek, Martin, Staněk, David |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds