Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i'rab. Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F I-score. This is compared to an integrated parsing model with an F I-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:658551 |
Date | January 2013 |
Creators | Dukes, Kais |
Publisher | University of Leeds |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0021 seconds