Halobacteria balance high external osmolality by the accumulation of almost equimolar amounts of KCl. Thus, steady Kplus supply is a vital prerequisite for life of these extreme halophiles. So far, Kplus was supposed to enter the cell only passively by use of potential-driven uniporters. However, the genome of the extreme halophilic archaeon Halobacterium sp. NRC-1 comprises one single operon containing the genes kdpFABC coding for homologs of the bacterial ATP-driven Kplus uptake system KdpFABC, together with an additional ORF so far annotated as cat3. Deletion of the kdpFABCcat3 genes led to a reduced ability to grow under limiting Kplus concentrations, whereas real-time RT-PCR measurements revealed both high induction rates and a transcriptional regulation of the Kdp system dependent on external Kplus concentration and growth phase. The synthesis of the high-affinity KdpFABC complex enables H. salinarum to grow under extreme potassium-limiting conditions of down to 20 µM Kplus. These results provide the first experimental evidence of ATP-driven Kplus uptake in halobacteria. The current opinion that Kplus homeostasis of H. salinarum is solely mediated via membrane potential-driven Kplus uniporters is obviously only one aspect of a more complex system.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2007121710 |
Date | 14 December 2007 |
Creators | Strahl, Henrik |
Contributors | Prof. Dr. Karlheinz Altendorf, Prof. Dr. Felicitas Pfeifer |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/zip, application/pdf |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0222 seconds