We study single-pursuer, line-of-sight Pursuit and Evasion games in polytopes in $\mathbb{R}^n$. We develop winning Pursuer strategies for simple classes of polytopes (monotone prisms) in Rn, using proven algorithms for polygons as inspiration and as subroutines. More generally, we show that any Pursuer-win polytope can be extended to a new Pursuer-win polytope in more dimensions. We also show that some more general classes of polytopes (monotone products) do not admit a deterministic winning Pursuer strategy. Though we provide bounds on which polytopes are Pursuer-win, these bounds are not tight. Closing the gap between those polytopes known to be Pursuer-win and those known not to be remains an problem for future researchers.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1082 |
Date | 01 January 2016 |
Creators | Phillpot, John |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © 2016 John E Phillpot, default |
Page generated in 0.0012 seconds