A personalized cardiovascular lumped parameter model of the left-sided heart and thesystemic circulation has been developed by the cardiovascular medicine research groupat Linköping University. It provides information about hemodynamics, some of whichcould otherwise only have been retrieved by invasive measurements. The framework forpersonalizing the model is made using 4D Flow MRI data, containing volumes describinganatomy and velocities in three directions. Thus far, the inputs to this model have beengenerated manually for each subject. This is a slow and tedious process, unpractical touse clinically, and unfeasible for many subjects.This project aims to develop a tool to calculate the inputs and run the model for mul-tiple subjects in an automatic way. It has its basis in 4D Flow MRI data sets segmentedto identify the locations of left atrium (LA), left ventricle (LV), and aorta, along with thecorresponding structures on the right side.The process of making this tool started by calculation of the inputs. Planes were placedin the relevant positions, at the mitral valve, aortic valve (AV) and in the ascending aortaupstream the brachiocephalic branches, and flow rates were calculated through them. TheAV plane was used to calculate effective orifice area of AV and aortic cross-sectional area,while the LV end systolic and end diastolic volumes were extracted form the segmentation.The tool was evaluated by comparison with manually created inputs and outputs,using 9 healthy volunteers and one patient deemed to have normal left ventricular func-tion. The patient was chosen from a subject group diagnosed with chronic ischemic heartdisease, and/or a history of angina, together with fulfillment of the high risk score ofcardiovascular diseases of the European Society of Cardiology. This data was evaluatedusing coefficient of variation, Bland-Altman plots and sum squared error. The tool wasalso evaluated visually on some subjects with pathologies of interest.This project shows that it is possible to calculate inputs fully automatically fromsegmented 4D Flow MRI and run the cardiovascular avatar in an automatic way, withoutuser interaction. The method developed seems to be in good to moderate agreement withthose obtained manually, and could be the basis for further development of the model.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-154496 |
Date | January 2019 |
Creators | Almquist, Camilla |
Publisher | Linköpings universitet, Avdelningen för kardiovaskulär medicin |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0073 seconds