Return to search

Evaluation of 5´- and 3´-UTR Translation Enhancing Sequences to Improve Translation of Proteins in CHO Cells

The purpose of this project was to identify and evaluate nucleotide sequences enhancing translation of proteins in Chinese hamster ovary (CHO) cells. Candidate sequences were placed in the 5´-untranslated region (UTR) or 3´ UTR respectively and evaluated in a CHO-based expression system with a fluorescent Fc-fusion protein as a model protein.Five plasmid vectors were constructed, two of which designed to have a randomized nucleotide library in their 5´ and 3´ UTR respectively, and three of which designed to hold varying repeats of a known enhancing translation (ET) sequence in their 5´ or 3´ UTR. The plasmid constructs were transfected into CHO cells and the protein expression was analyzed both by fluorescence intensity in single cells using flow cytometry and in bulk by monoclonal antibody titer analysis based on Protein A affinity.The main result is that both flow cytometry and titer analysis indicate that insertion of five repeats of the ET in the 5´UTR has a negative effect on protein expression as compared to the control which had no ET repeats. Results related to the insertion of three ETs in the 5´ UTR were ambiguous. The titer analysis indicated that it had a negative effect on the protein expression compared to the control which had no ET repeats, whereas the flow cytometry results suggest that the effect is negligible. Transfection of library plasmids was unsuccessful; hence no library expression analysis results were achieved. Due to the time constraints of the project, the reason for the unsuccessful transfection of library plasmids was not investigated, but the LTX transfection method is stated as a highly plausible cause.Based on the outcome of this study, two recommendations for future work are suggested. The first one is to continue the focus on UTR sequences in terms of library screening, and to improve the method of transfecting library plasmid constructs into CHO cells using lipofection. The second suggestion for further studies is to test different UTR sequence lengths without involving potential ETs, to rule out the effect and positions of the ETs and investigate the expressional effect of UTR length solely.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-150363
Date January 2018
CreatorsEinarsson, Ellen
PublisherLinköpings universitet, Teknisk biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds