The goal of this thesis is to show global instability or Arnold's diffusion in the elliptic restricted three body problem (ERTBP) by proving the existence of pseudo-trajectories diffusing along the phase space for certain ranges of the eccentricity of the primaries (e), the angular momentum of the comet (G) and the parameter of mass (µ). More precisely, the results presented in his thesis, are valid for G big enough, eG bounded and µ small enough.
The thesis is divided in two chapters and two appendices. The chapter one, contains all the main results. After introducing the ERTBP, we use McGehee coordinates to define the infinity manifold, which turn to be a three dimensional invariant manifold in the extended phase space which behaves topologically as a Normally Hyperbolic Invariant Manifold (NHIM), although it is of parabolic type. This means that the rate of approach and departure from it along its invariant manifolds is polynomial in time, instead of exponential-like as happens in a standard NHIM. On the other hand, the inner dynamics is trivial, since it is formed by a two-parameter family of 2p-periodic orbits in the 5D extended phase space which correspond to constant solutions in the 4D phase space. As a consequence, the stable and unstable manifold of the infinity manifold are union of the stable and unstable manifolds of its periodic orbits, and as long as these manifolds intersect along transversal heteroclinic orbits, the scattering map can be defined, as De la Llave, Seara and Delshams did. Unfortunately, since the inner dynamics of the infinity manifold is so simple, the classical mechanisms of diffusion, consisting of combining the inner and outer dynamics, do not work here. Instead, as a novelty, we will be able to find two different scattering maps which will be combined in a suitable way to provide orbits whose angular momentum increases.
The asymptotic formula of the scattering map relies entirely in the computation of the so called Menikov potential as defined in the works of Delshams, Gutiérrez and Seara. The first derivative of the Melnikov potential gives the first order approximation of the distance between the stable and unstable invariant manifolds of the infinity manifold whenever the parameter of mass is exponentially small. Given this setting, a series of lemmas and propositions will lead to a formula of the dominant terms of this Melnikov potential. The key idea is to compute its Fourier coefficients which will be exponentially small when the angular momentum is large and an explicit formula will be not possible, therefore and effective computation will be necessary. To do so the product eG will play a key role which lead to theorems 1.5 and 1.6, the former gives an asymptotic formula for the Melnikov potential whenever eG is samll, and the latter whenever eG is finite. Both of them requires µ to be exponentially small with respect to G, and G to be big enough. These theorems naturally produce asymptotic formulas for the scattering maps in both cases and are the base for theorems 1.15 and 1.16 which formulate the existence of pseudo-trajectories in the ERTBP.
In chapter two, we provide the details and the proofs of the results concerning the asymptotic formulas, given in chapter one, for the Melnikov potential and the scattering maps, including effective bounds of every error function involved. The appendices have the more technical results needed to complete in a rigorous way every proof, but because of its nature, can be relegated to the end, to make easier to follow up the main proofs. / El objetivo de esta tesis es mostrar inestabilidad global o difusión de Arnold en el problema restringido de tres cuerpos elíptico (PTCRE) mostrando la existencia de pseudo-trayectorias difusivas en el espacio fase para ciertos rangos de la excentricidad (e), el momento angular del cometa (G) y el parámetro de masa (µ). Mas precisamente, los resultados presentados, son válidos para G suficientemente grande, eG acotado y µ suficientemente pequeño. La tesis está dividida en dos capítulos y dos apéndices. El capítulo 1, contiene todos los resultados principales. Después de introducir el PTCRE, usamos coordenadas de McGehee para definir la variedad de infinito, que será de dimensión tres en el espacio fase extendido y que topológicamente se comporta como una variedad invariante normalmente hiperbólica (NHIM), aunque es de tipo parabólico. Esto significa que la tasa de acercamiento y alejamiento de ella a lo largo de sus variedades invariantes es polinomial, en lugar de exponencial como sucede en una NHIM estándar. Por otra parte, la dinámica interior es trivial ya que está formada por una familia de orbitas con 2 parámetros y de período 2p en el espacio extendido 5D que corresponden a soluciones constantes en el espacio reducido 4D. Como consecuencia, las variedades estables e inestables de la variedad de infinito son la unión de las variedades estables e inestables de sus orbitas periódicas y siempre que estas variedades se intersequen sobre orbitas heteroclínicas transversales, el scattering map puede ser definido como hicieron De la Llave, Seara y Delshams . Desafortunadamente, ya que la dinámica interior de la variedad de infinito es muy simple, el mecanismo de difusión clásico, que consiste en combinar la dinámica interior con la exterior, no funciona aquí. En su lugar, como una novedad, seremos capaces de encontrar dos scattering maps diferentes que serán combinados de manera adecuada para producir orbitas cuyo momento angular crezca. La fórmula asintótica del scattering map recae enteramente en el cálculo del llamado potencial de Melnikov, como es definido en los trabajos de Delshams, Gutiérrez y Seara. La primer derivada del potencial de Melnikov da la aproximación a primer orden de la distancia entre las variedades estable e inestable de la variedad de infinito cuando el parámetro de masa es exponencialmente pequeño. Con este planteamiento, una serie de lemas y proposiciones conducirán a la fórmula de los términos dominantes del potencial de Melnikov. La idea clave es calcular sus coeficientes de Fourier, que serán exponencialmente pequeños cuando el momento angular es grande y una fórmula explícita no será posible, así que un cálculo efectivo será necesario. Para hacerlo, el producto eG jugará un papel clave que conducirá a los teoremas 1.5 y 1.6, el primero da una fórmula asintótica del potencial de Melnikov cuando eG es pequeño y el segundo cuando eG es finito. Ambos requieren que µ sea exponencialmente pequeño con respecto a G, y G suficientemente grande. Estos teoremas naturalmente producirán las fórmulas asintóticas de los scattering maps para ambos casos y son la base de los teoremas 1.15 y 1.16, que formulan la existencia de pseudo-trayectorias en el PTCRE. En el capítulo 2, damos los detalles y las pruebas de los resultados concernientes a las formulas asintóticas, dadas en el capítulo 1, para el potencial de Melnikov y los scattering maps, incluyendo las cotas efectivas de cada error involucrado. Los apéndices tienen los resultados mas técnicos que son necesarios para completar de forma rigurosa cada prueba, pero que por su naturaleza, pueden ser relegados al final para hacer seguir las pruebas con mas facilidad.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/277577 |
Date | 16 June 2014 |
Creators | Rosa Ibarra, Abraham de la |
Contributors | Martínez-Seara i Alonso, M. Teresa (Maria Teresa), Delshams, Amadeu, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 96 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/, info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds