Return to search

A contribution to the theory of convolutional codes from systems theory piont of view

Cotutela Universitat Politècnica de Catalunya i Université Mohammed V-Agdal / Information is such a valuable good of our time. Given that the transmission of information has always been subject to precision problems, knowing the obstacles existing between the transmitter and the receiver, eventual disruptions can happen anywhere in between, the physical means, channels involved with the exchange are never perfect and they are subject to errors that might result in loss of important data. Error correcting codes are a key element in the transmission and storage of digital information.
In this thesis we study the possibility to redefine and improve properties of convolutional codes in terms of coding and decoding, with the help of the systems and control theory.
For that matter, in chapter 1, we recall notions on coding theory, more specifically, on linear codes, both block and convolutional, redefining the convolutional codes as submodules of the F^n_{q} which is our main workspace. And we go through the prerequisites involved in the process of encoding and decoding, both for block and convolutional codes.
And in order to approach them with tools of the systems theory, in chapter 2, we give the equivalence of the generating matrix in the form of a realization (A,B,C,D) of an input-output system. Then, we studied the concatenation because it has been proved to improve the transmission. In this work, we consider two big families of concatenation: serial concatenation, and parallel concatenation and two other models of concatenation called systematic serial concatenation and parallel interleaver concatenation.
In chapter 3, we study control properties for each case. Nevertheless, we focus on the property of output-observability, and conditions to obtain it, particularly an easy iterative test is presented in order to discuss whether a code is output-observable. This test consists in calculating certain ranks of block matrices constructed from the matrices A, B, C, D. The output-observability property is very beneficial for the decoding as discussed in the next chapter.
Moreover, in chapter 4, we assess two methods for a complete decoding operating on an iterative fashion, then suggest conditions for a step by step decoding in a case of concatenation, in order to recover exactly each and every original sequence after operation of every implied code. Following this concept, we study the convolutional decoding in general, and in particular the one of concatenated models in serial, in parallel, in systematic serial and finally in interleaver parallel implementation.
In chapter 5, we suggest an application in steganography, in which we implement a steganographic scheme, inspired by the linear system representation of convolutional codes. Having the output-observability matrix being the backbone behind the construction of our decoding algorithms, coupled with the syndrome method, we formed some embedding/retrieval algorithms inspired by that construction. Those methods display the protection of communication within time-related transfer of information, with interesting possibilities and results.
Finally, a chapter summarizing all our achievements and a short list of possible future lines of work upon aspects that we would like to continue studying in order to achieve new related goals. / La información es un valioso bien de nuestro tiempo. Dado que la transmisión de la información siempre ha estado sujeta a problemas de precisión, conociendo los obstáculos existentes entre el transmisor y el receptor, las interrupciones eventuales pueden ocurrir en cualquier lugar en el medio, el medio físico, canal involucrado con el cambio nunca es perfecto y está sujeto a errores que podrán dar como resultado una pérdida de datos importantes.
Dado que los códigos correctores de errores son un elemento clave en la transmisión y almacenamiento de información digital, por eso un más fácil y mejor uso abre interesantes oportunidades en la regulación de la transmisión de la información, el cual es una ventaja que ofrece la teoría de sistemas lineales y el álgebra lineal a la definición de los códigos de convolución. Esta es la razón por la que en esta tesis, seguimos esa perspectiva para estudiar la posibilidad de redefinir y mejorar las propiedades de los códigos de convolución en base a la codificación y descodificación, con la ayuda de los sistemas y la teoría de control.
En este sentido, en el capítulo 1, recordamos nociones sobre la teoría de códigos, más específicamente, sobre los códigos lineales, tanto de bloques como de convolución, se redefinen los códigos convolucionales como submódulos de Fnq que es nuestro espacio principal de trabajo. Y damos un repaso a los requisitos previos necesarios en el proceso de codificación y descodificación, tanto para los códigos de bloque como los códigos convolucionales. Y con el fin de aproximarnos a los códigos convolucionales con las herramientas de la teoría de sistemas, en el capítulo 2, damos la equivalencia de la matriz generatriz en función de una realización (A;B;C;D) de un sistema de entrada-salida. A continuación, se estudia la concatenación porque es conocido que mejora la transmisión. En este trabajo, se consideran dos grandes familias de concatenación: la concatenación en serie, y la concatenación en paralelo así como otros dos modelos de concatenación llamados concatenación en serie sistemática y la concatenación en paralelo con intercalador.
En el capítulo 3, estudiamos propiedades de control para cada caso. Sin embargo, nos hemos centrado en la propiedad de “funcional output-controlabilidad" que en lenguaje de teoría de códigos es conocido como “output-observabilidad", y en obtener condiciones que aseguren dicha condición, en particular se presenta un fácil test iterativo, que permite discutir cuando un código de convolución es output-observable. Este test consiste en calcular los rangos de ciertas matrices por bloques construidas a partir de las matrices A, B, C, D. La propiedad de output-observabilidad es muy útil para la descodificación que se estudia en el próximo capítulo.
Por otra parte, en el capítulo 4, se presentan dos métodos para una completa descodificación operando de forma iterativa, a partir de ahí, se sugieren
condiciones para paso a paso descodificar la concatenación, a fin de recuperar exactamente todos y cada uno de los códigos implicados en la operación. Siguiendo esta idea, se estudia la descodificación de los códigos convolucionales en general, y en particular la de los modelos concatenados en serie, en paralelo, en serie sistemática y finalmente la concatenación en paralelo con intercalador.
En el capítulo 5, se presenta una aplicación a la esteganografía, en el que se implementa un esquema esteganográfico, inspirado en la representación del
sistema lineal de códigos convolucionales. La matriz de output-observabilidad es la columna vertebral que está detrás de la construcción de nuestros algoritmos de descodificación que junto con el método de síndrome, formamos algunos algoritmos Inclusión/recuperación inspirados en esa construcción. Estos métodos muestran la protección de la comunicación dentro de la transferencia relacionada con el tiempo que dura la información, con interesantes posibilidades y resultados.
Por último, un capítulo que resume todos nuestros logros, en este caso el desarrollo de un nuevo algoritmo para escribir una realización, los métodos algoritmos para resolver la descodificación de códigos convolucionales. Esta aplicación a los códigos convolucionales de la teoría de sistemas lineales muestra un abanico de oportunidades para explorar, ya que como una aplicación adicional, hemos desarrollado algunos nuevos modelos esteganográficos, basados en la representación de los códigos convolucionales usando la teoría de sistemas lineal, y una corta lista de posibles futuras líneas de trabajo en los aspectos que nos gustaría seguir estudiando para alcanzar nuevas metas relacionadas seguir estudiando para alcanzar nuevas metas relacionadas con este tema. / L'information est un bien de notre époque dont l'importance n'est plus à démontrer. Etant donné que la transmission de l'information a toujours été soumise à des problèmes de précisions, dûs aux obstacles existant entre le transmetteur and le récepteur, d'éventuelles perturbations peuvent arriver n'importe où, entre les canaux physiques, faisant partie du processus d'échange qui n'est jamais parfait et ils peuvent toujours être affectés par des erreurs créant d'importantes pertes d'information. Les codes correcteurs d'erreurs sont un élément clé dans la transmission et la conservation de l'information numérique.
Etant donné que les codes correcteurs d'erreurs sont un élément clé dans la transmission et la conservation de l'information digitale, ainsi un meilleur et plus simple usage ouvre des opportunités plus intéressantes dans la régulation de la transmission de l'information, qui est l'avantage que la définition des codes convolutifs suivant la théorie des systèmes linéaires apporte, avec le matériel de l'algèbre linéaire. C'est pour cette raison que dans cette thèse, nous suivons cette perspective pour étudier la perspective d'étudier la possibilité de redéfinir et d'améliorer les propriétés des codes convolutifs en termes de codage et de décodage, grâce aux outils de la théorie des systèmes et de contrôle.
A cet effet, dans le chapitre 1, nous rappelons des notions sur la théorie des codes linéaires, les codes en bloc ainsi que les codes convolutifs, redéfinissant les codes convolutifs comme des sous-modules de Fnq qui est notre principal espace de travail. Et c'est ainsi que nous invoquons tous les prérequis nécessaires pour le processus de codage et de décodage, pour ce qui est des codes en bloc, et des codes convolutifs.
Et dans le but d'approcher ces derniers grâce aux outils de la théorie des systèmes, dans le chapitre 2, nous donnons l'équivalence de la matrice génératrice sous la forme d'une réalisation (A;B;C;D) d'un un système inputoutput. Ensuite, nous étudions la concaténation parce qu'elle a été prouvée d'améliorer la transmission. Pour cette partie, nous considérons deux grandes familles de concaténation: concaténation en série et en parallèle, ainsi que deux autres modèles de concaténation appelés: concaténation systématique en série et concaténation en parallèle avec interleaver.
Dans le chapitre 3, nous étudions les propriétés de contrôle pour chacun des cas. Néanmoins, nous nous concentrons sur la propriété de "functional
output controllability" que dans le langage de théorie est appelé "outputobservability", et sur les conditions pour l'obtenir, en particulier un test itératif relativement facile a été présente en vue de discerner les codes output-observables de ceux qui ne le sont pas. Ce test permet de calculer certains rangs de blocs de matrices construits à partir des matrices A, B, C, D. La propriété d'output-observabilité est très bénéfique pour le décodage comme explicite dans le prochain chapitre.
De plus, dans le chapitre 4, nous évaluons deux méthodes pour un décodage complet opérant de manière itérative, ensuite suggérons des conditions pour un décodage étape par étape dans un cas de concaténation, en vue de récupérer exactement chacune des séquences d'origine après opération de chacun des codes impliqués. Suivant ce concept, nous _étudions le décodage convolutif en général et en particulier celui des modèles de concaténation en série, en parallèle, en série systématique et finalement en parallèle avec interleaver.
Dans le chapitre 5, nous suggérons une application en sténographie, dans laquelle nous implémentons un schéma sténographique, inspiré par la représentation en termes de systèmes linéaires des codes convolutifs. Ayant la matrice d'output-observabilité étant la matrice de référence pour la construction de nos algorithmes de décodage, couplée avec la méthode du syndrome, nous avons proposé quelques algorithmes d'encapsulation et de recouvrement inspirés par cette construction. Ces méthodes montrent la protection de la communication lors des transferts d'information dépendant du temps, avec d'intéressantes possibilités ainsi que des résultats encourageants.
Finalement, un chapitre résumant tout ce que nous avons accompli, en l'occurrence la mise sur pied d'un nouvel algorithme pour écrire une réalisation, méthodes et algorithmes pour résoudre le décodage des codes convolutifs. Cette application des systèmes linéaires sur la théorie des codes convolutifs
montre un ensemble de possibilités pour nous à explorer, puisque nous avons développé une application de plus, nous avons développé quelques modèles sténographiques, basés sur la représentation des codes convolutifs grâce à la théorie des systèmes linéaires, et une courte liste des futurs possibles axes de travail sur des aspects que nous souhaiterions étudier pour parachever nos buts traitant de problématiques similaires

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/317953
Date25 May 2015
CreatorsUm, Laurence Emilie
ContributorsSouidi, El Mamoun, García Planas, María Isabel, Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format201 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
RightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/, info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds