Για ένα, μάλλον, μακρύ διάστημα, (1950-1975) οι Μαθηματικοί ασχολήθηκαν με την εμφύτευση μιας αντιμεταθετικής τοπολογικής ημιομάδας σε ομάδα. Είναι γνωστό ότι για ημιομάδα S έχουμε αλγεβρική εμφύτευση στο σχέση ισοδυναμίας = , όπου στοιχεία της καινούργιας ομάδας). Το νέο στοιχείο είναι ότι ενώ η συνθήκη εμφύτευσης αναφέρεται σε Ομοιόμορφο χώρο, έχει εισαχθεί ο Η- μι-Ομοιόμορφος χώρος. Οι διαφορές μεταξύ των δύο χώρων είναι τεράστιες και ακριβώς, εκεί έγκειται η δημιουργικότητα της νέας δομής. Έτσι, η πρώτη θεώρηση για τη διατριβή είναι η προσπάθεια επιστημόνων να βρούνε
συνθήκες, ώστε να μπορεί μια τοπολογική αντιμεταθετική ημιομάδα ( S,.,τ) (με τη συνήθη έννοια των . και τ ) να εμφυτεύεται στη δομή η γνωστή ισοδυ- ναμία ad=bc αν ). Τα έξη πρώτα εδάφια είναι εισαγωγικά. Στη συνέχεια εκθέτουμε όλη τη μεθοδο- λογία του θέματος / --
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8712 |
Date | 19 May 2015 |
Creators | Μαστέλλος, Ιωάννης |
Contributors | Κοντολάτου, Αγγελική, Mastellos, Ioannis, Κοντολάτου, Αγγελική, Σταματάκης, Ιωάννης, Γεωργίου, Δημήτριος, Στρατηγόπουλος, Δημήτριος, Παπαδόπουλος, Βασίλειος, Ζαφειρίδου, Σοφία, Λεοντίδης, Παύλος |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Rights | 0 |
Relation | Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. |
Page generated in 0.0116 seconds