Return to search

Robust estimation for structural time series models

This thesis aims at developing robust methods of estimation in order to draw valid inference from contaminated time series. We concentrate on additive and innovation outliers in structural time series models using a state space representation. The parameters of interest are the state, hyperparameters and coefficients of explanatory variables. Three main contributions evolve from the research. Firstly, a filter named the approximate Gaussian sum filter is proposed to cope with noisy disturbances in both the transition and measurement equations. Secondly, the Kalman filter is robustified by carrying over the M-estimation of scale for i.i.d observations to time-dependent data. Thirdly, robust regression techniques are implemented to modify the generalised least squares transformation procedure to deal with explanatory variables in time series models. All the above procedures are tested against standard non-robust estimation methods for time series by means of simulations. Two real examples are also included.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:645269
Date January 1990
CreatorsKwan, Tan Hwee
PublisherLondon School of Economics and Political Science (University of London)
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.lse.ac.uk/2809/

Page generated in 0.0018 seconds