Return to search

Asymptotic analysis for Markovian models in non-equilibrium statistical mechanics

This thesis is mainly concerned with the problem of exponential convergence to equilibrium for open classical systems. We consider a model of a small Hamiltonian system coupled to a heat reservoir, which is described by the Generalized Langevin Equation (GLE) and we focus on a class of Markovian approximations to the GLE. The generator of these Markovian dynamics is an hypoelliptic non-selfadjoint operator. We look at the problem of exponential convergence to equilibrium by using and comparing three different approaches: classic ergodic theory, hypocoercivity theory and semiclassical analysis (singular space theory). In particular, we describe a technique to easily determine the spectrum of quadratic hypoelliptic operators (which are in general non-selfadjoint) and hence obtain the exact rate of convergence to equilibrium.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:560616
Date January 2012
CreatorsOttobre, Michela
ContributorsPavliotis, Greg
PublisherImperial College London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10044/1/9797

Page generated in 0.0083 seconds