Return to search

The development of novel diagnostic sensors based on linear dichroism spectroscopy

Within this thesis the use of linear dichroism (LD) spectroscopy was utilised as a new platform for the development of diagnostic sensors. To develop a novel diagnostic sensor in combination with LD spectroscopy a particle with a high aspect ratio is need. Such a particle is M13 bacteriophage, this micron long molecular scaffold is easily alignable in shear flow generating a large LD signal. Using LD spectroscopy, it was possible to demonstrate the successful detection of multiple DNA targets, and that the sensor can also discriminate between DNA sequences differing in length, with a limit of detection (LOD) of 2 M, competitive with the current non amplification methods of DNA detection. The reversibility and regeneration of the sensor were also investigated. Finally, the development of an M13 bacteriophage sensor for the detection of proteins was designed in an unprecedented plug-and-play format. The assay was designed to detect thrombin, which is important in the monitoring of blood clotting disorders. LD spectroscopy enabled the detection of thrombin with a LOD of 10 pM and with a dynamic range from 10 pM to 47 nM.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:715570
Date January 2017
CreatorsLittle, Haydn Andrew
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7421/

Page generated in 0.0186 seconds