Return to search

Pflanzenviren als chemische Plattform für die Nanotechnologie

Die Proteinhülle von Pflanzenviren besteht aus Protein-Untereinheiten, die das Genom des Virus verkapseln und transportieren. Der zugrunde liegende self-assembly-Mechanismus kann für nanotechnologische Anwendungen genutzt werden, indem Fremdmoleküle in den Viren verkapselt werden. Diese sogenannten Virus-ähnlichen Partikel (VLP) können zum Wirkstofftransport in der Krebstherapie, für Gentherapie oder als Kontrastmittel bei bildgebenden Verfahren verwendet werden. Auch die Oberfläche der Proteinhülle kann chemisch oder molekularbiologisch funktionalisiert werden. Ein großer Vorteil von Pflanzenviren ist, dass sie keine Gefahr für den Menschen darstellen und einfach in natürlichen Wirtspflanzen hergestellt werden können.
In dieser Arbeit wird am Beispiel des Cowpea Chlorotic Mottle Virus (CCMV) gezeigt, wie diese Nanomaterialien effizient hergestellt und nutzbar gemacht werden können.
Im ersten Kapitel wurde eine Affinitätsextraktion basierend auf einem neuen Peptid-Aptamer entwickelt, um das CCMV selektiv aus dem Extrakt der infizierten Pflanze zu isolieren. Das Reinigungsprotokoll wurde validiert und eine finale Reinheit von 98,4% mittels Umkehrphasen-HPLC bestimmt.
Im zweiten Kapitel wurden CCMV-VLPs durch rekombinante Expression und anschließende in vitro Assemblierung der Kapsidproteine hergestellt. Die Monodispersität der VLPs wurde durch Transmissionselektronenmikroskopie (TEM) bestätigt. Zusätzlich wurde eine Mutante der CCMV-VLPs hergestellt, die physiologischen Bedingungen standhält und für den Einsatz in vivo geeignet ist.
Im dritten Kapitel wurden CCMV und dessen VLPs für nanotechnologische Anwendungen genutzt. Gold-Nanopartikel wurden in CCMV-VLPs verkapselt und im TEM sichtbar gemacht. Das CCMV-Kapsid wurde mit einem Modellpeptid funktionalisiert, um das Potenzial dieses Nanomaterials als chemische Plattform zu demonstrieren. / The protein shell of plant viruses consists of protein subunits that encapsulate and transport the viral genome. The underlying self-assembly mechanism can be utilized for nanotechnological applications by encapsulating foreign molecules within the viruses. These so-called virus-like particles (VLPs) can be used for drug delivery in cancer therapy, gene therapy, or as contrast agents in imaging techniques. Additionally, the surface of the protein shell can be functionalized chemically or via molecular biology techniques. A significant advantage of plant viruses is that they pose no threat to humans and can be easily produced in natural host plants.
This work demonstrates how these nanomaterials can be efficiently produced and utilized using the example of Cowpea Chlorotic Mottle Virus (CCMV).
In the first chapter, an affinity extraction based on a novel peptide aptamer was developed to selectively isolate CCMV from the extract of the infected plant. The purification protocol was validated, achieving a final purity of 98.4% using reverse-phase HPLC.
In the second chapter, CCMV-VLPs were produced through recombinant expression and subsequent in vitro assembly of the capsid proteins. The monodispersity of the VLPs was confirmed by transmission electron microscopy (TEM). Additionally, a mutant of the CCMV-VLPs was produced that withstands physiological conditions and is suitable for in vivo applications.
In the third chapter, CCMV and its VLPs were used for nanotechnological applications. Gold nanoparticles were encapsulated within CCMV-VLPs and visualized using TEM. The CCMV capsid was also functionalized with a model peptide to demonstrate the potential of this nanomaterial as a chemical platform.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/29731
Date15 July 2024
CreatorsTscheuschner, Georg
ContributorsWeller, Michael G., Balasubramanian, Kannan, Schneider, Rudolf
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0017 seconds