Return to search

Raman spectroscopy of terrestrial analogues for ureilite formation

This study used Raman spectral analysis to characterise the structural order of carbon in three carbonaceous chondrites and twelve achondrites. The achondrites analysed were a group of carbon-rich meteorites, known as ureilites. These meteorites are composed primarily of olivine and pyroxene and have igneous textures but contain noble gases and primitive oxygen isotopes which appear to contradict their high temperature origin, which has led to the group being described as “enigmatic” by some authors. This study used Raman spectral analysis to show that ureilite carbon is heterogeneous, even at the micrometer scale, and is derived from more than one source. In order to better understand the processes involved in ureilite formation, terrestrial analogues containing carbonaceous material with similar spectral characteristics to the meteorites were identified. Analysis of terrestrial samples showed that the sedimentary carbon can be incorporated into igneous rocks with little structural change, suggesting that the same may be true for carbonaceous material in ureilites. Although the terrestrial carbon is biogenic in origin, it is structurally similar to pre-biotic organic matter found in meteorites. Carbon can be used as an effective tracer for geological events, such as melting and heating, which appear to be ubiquitous in planetary evolution. This study concluded that carbon is a primary component of melts on the ureilite parent body (UPB) and that impact processes have increased the heterogeneity of ureilite carbonaceous material. Carbon is likely to have been remobilised by later impact events, explaining the lack of correlation between carbon content and isotopic values with other geochemical parameters. Spectral analysis suggested that most of the carbon in ureilites is derived from primitive material.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:522236
Date January 2010
CreatorsWright, Alison Jane
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=130931

Page generated in 0.0039 seconds