Return to search

Mitochondrial DNA replication in pre-implantation embryonic development

All eukaryotic cells possess mitochondrial DNA (mtDNA), which is maternally inherited through the oocyte, its replication being regulated by nuclear-encoded replication factors. It was hypothesised that mtDNA replication is highly regulated in oocytes, pre-implantation embryos and embryonic stem cells (ESCs) and that this may be disrupted following nuclear transfer (NT). MtDNA copy number decreased between 2-cell and 8-cell staged porcine embryos and increased between the morula and expanded blastocyst stages, coinciding with increased expression of mtDNA replication factors. Competent porcine oocytes replicated their mtDNA prior to and during in vitro maturation to produce and maintain the 100000 mtDNA copies required for fertilisation. Those oocytes in which mtDNA replication was delayed had reduced developmental ability. Expression of pluripotency-associated genes decreased as murine ESCs differentiated into embryoid bodies, although expression of mtDNA replication factors did not increase until the stage equivalent to organogenesis. Cross-species NT embryos in which the donor cell-derived mtDNA was replicated produced decreased developmental outcomes compared to those in which no mtDNA replication took place. Disruption of the strict regulation of mtDNA replication that occurs during early embryogenesis, as is likely following NT, may therefore contribute to the reduced developmental ability of embryos produced using such techniques.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:489588
Date January 2007
CreatorsSpikings, Emma Catherine
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/45/

Page generated in 0.0601 seconds