As Next Generation (NextG) networks become more complex, the need to develop a robust, reliable network traffic prediction framework for intelligent network management increases.
This study compares the performance of machine learning models in network traffic prediction using a custom Service-Level Agreement (SLA) - based loss function to ensure SLA violation constraints while minimizing overprovisioning. The proposed SLA-based parametric custom loss functions are used to maintain the SLA violation rate percentages the network operators require. Our approach is multivariate, spatiotemporal, and SLA-driven, incorporating 20 Radio Access Network (RAN) features, custom peak traffic time features, and custom mobility-based clustering to leverage spatiotemporal relationships. In this study, five machine learning models are considered: one recurrent neural network (LSTM) model, two encoder-decoder architectures (Transformer and Autoformer), and two gradient-boosted tree models (XGBoost and LightGBM). The prediction performance of the models is evaluated based on different metrics such as SLA violation rate constraints, overprovisioning, and the custom SLA-based loss function parameter. According to our evaluations, Transformer models with custom peak time features achieve the minimum overprovisioning volume at 3% SLA violation constraint. Gradient-boosted tree models have lower overprovisioning volumes at higher SLA violation rates. / Master of Science / As the Next Generation (NextG) networks become more complex, the need to develop a robust, reliable network traffic prediction framework for intelligent network management increases. This study compares the performance of machine learning models in network traffic prediction using a custom loss function to ensure SLA violation constraints. The proposed SLA-based custom loss functions are used to maintain the SLA violation rate percentages required by the network operators while minimizing overprovisioning. Our approach is multivariate, spatiotemporal, and SLA-driven, incorporating 20 Radio Access Network (RAN) features, custom peak traffic time features, and mobility-based clustering to leverage spatiotemporal relationships. We use five machine learning and deep learning models for our comparative study: one recurrent neural network (RNN) model, two encoder-decoder architectures, and two gradient-boosted tree models. The prediction performance of the models was evaluated based on different metrics such as SLA violation rate constraints, overprovisioning, and the custom SLA-based loss function parameter.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116521 |
Date | 20 October 2023 |
Creators | Baykal, Asude |
Contributors | Electrical and Computer Engineering, Soysal, Alkan, Xuan, Jianhua, Smith, Leonard Allen |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0026 seconds