Return to search

High Performance Reference Crystal Oscillator for 5G mmW Communications

Future wireless communications (often referred to as 5G) are expected to operate at much higher frequencies compared to today’s wireless systems. During this thesis, we have investigated the option to use high frequency crystal oscillators, which along with a PLL, will generate the RF LO signal in the mmW range. Different topologies that consume low power and deliver low phase noise for better channel capacity have been studied and presented. In this report we provide a detailed analysis of crystal oscillator theory and designand we discuss techniques that we have used to simulate our models. During this project we have encountered various challenges such as parasitic oscillation, start-up behaviour and effects from package modeling. All these issues are discussed in detail while solutions, examples and results are demonstrated. Finally, along with the crystal oscillator we have also proceeded in the design of a buffer for a better input/output isolation. A squarer has been implemented for greater power savings.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-112568
Date January 2014
CreatorsTorabian Esfahani, Tahmineh, Stefanidis, Stefanos
PublisherLinköpings universitet, Elektroniska komponenter, Linköpings universitet, Tekniska högskolan, Linköpings universitet, Elektroniska komponenter, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds