Return to search

Endogenous retroviruses and the immune system

Initial sequencing of the human and mouse genomes revealed that substantial fractions were composed of retroelements (REs) and endogenous retroviruses (ERVs), the latter being relics of ancestral retroviral infection. Further study revealed ERVs constitute up to 10% of many mammalian genomes. Despite this abundance, comparatively little is known about their interactions, beneficial or detrimental, with the host. This thesis details two distinct sets of interactions with the immune system. Firstly, the presentation of ERV-derived peptides to developing lymphocytes was shown to exert a control on the immune response to infection with Friend Virus (FV). A self peptide encoded by an ERV negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and resulted in an impaired immune response. However, CD4+ T cell-mediated antiviral activity was fully preserved and repertoire analysis revealed a deletional bias according to peptide affinity, resulting in an effective enrichment of high-affinity CD4+ T cells. Thus, ERVs exerted a significant influence on the immune response, a mechanism that may partially contribute to the heterogeneity seen in human immune responses to retroviral infections. Secondly, a requirement for specific antibodies was shown in the control of ERVs. In a range of mice displaying distinct deficiencies in antibody production, products from the intestinal microbiota potentially induce ERV expression. Subsequent recombinational correction of a defective murine leukaemia virus (MLV) results in the emergence of infectious virus. In the long term, this leads to retrovirus-induced lymphomas and morbidity. ERVs, therefore, provide a potential link between the intestinal microbiota and a range of pathologies, including cancer. Finally, a new computational tool, REquest, was developed for use in the above studies. REquest allows the mining of retroelement (RE) and ERV expression data from the majority of commercially available human and murine microarray platforms and allows rapid hypothesis testing with publicly available data.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:626340
Date January 2013
CreatorsYoung, G. R.
PublisherUniversity College London (University of London)
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://discovery.ucl.ac.uk/1404381/

Page generated in 0.0017 seconds