Regulatory T cells (Tregs) have shown considerable potential in the treatment of murine models of immuno-pathology. Whilst poly-clonal Tregs are able to suppress immuno-pathology in a number of models, the superiority of Ag-specific Treg treatment has been demonstrated using Tregs from T cell receptor (TCR)- transgenic animals. Translation of these promising results to the clinic has been hampered by difficulties in isolating or enriching the rare Ag-specific Tregs from the polyclonal population. Here I describe two distinct approaches to generate Ag-specific T cells with regulatory ability: firstly, TCR gene transfer into purified CD4+CD25+ T cells was used to redirect the specificity of naturally occurring Tregs. Secondly, co-transfer of FoxP3 and TCR genes served to convert conventional CD4+ T cells into Ag-specific ‘Treg-like’ cells. Both approaches generated T cells that suppressed in vitro and engrafted efficiently, retaining TCR and FoxP3 expression, when adoptively transferred into recipient mice. Using an established arthritis model, I demonstrate Ag-driven accumulation of the gene modified T cells at the site of joint inflammation, which resulted in a reduction of joint swelling. In animals treated with TCR-transferred natural Tregs this was accompanied by a local reduction in the number of inflammatory Th17 cells and a significant decrease in arthritic bone destruction. Together, I have described a strategy to rapidly generate Ag-specific Tregs capable of antigen-dependent amelioration of autoimmune damage in the absence of general immune suppression. These approaches could practicably be translated into the clinic in order to treat numerous different immuno-pathologies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:625252 |
Date | January 2009 |
Creators | Wright, G. P. |
Publisher | University College London (University of London) |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://discovery.ucl.ac.uk/18952/ |
Page generated in 0.0018 seconds