Return to search

A configurable real-time adaptive imaging and illumination system

Research on information processing in neuronal networks may lead to a better understanding of many brain diseases and disorders and could inform potential future treatments. It may also lead to the development of more intelligent electronic technology. To understand how the brain processes information we need to study the patterns of action potentials (APs) in a neuronal network over the long-term. The aim of this project, therefore, is to develop an optical system to both detect and stimulate APs in a small neuronal network. A closed-loop system has been developed that consists of a signal detection tool (a camera system), a signal analysis tool (a real-time computer) and a signal delivery tool (a spatially modulated light source). The conventional techniques for measuring APs, using patch clamp electrodes or multi electrode arrays for example, are limited by the spatial extent, or the spatial resolution, that can be achieved. Alternatively, optical imaging systems can be used to monitor APs. Imaging systems can achieve high-resolution across a wide field-of-view. To record network-wide neuronal activity a high- speed camera is necessary. Ideally imaging needs to be performed continuously over long periods of time. However, continuous high-speed imaging is typically not possible using commercially available systems due to restrictions in bandwidth.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582595
Date January 2012
CreatorsFu, Bo
PublisherUniversity of Nottingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0016 seconds