Return to search

Vibrations of preloaded cylindrical shells

A theoretical and experimental investigation of the dynamic behaviour of preloaded cylindrical shells including the effects of meridional cracking has been carried out. A Donnell-type equation is derived to study preloaded cylindrical shell vibrations. The solution is obtained using the Galerkin Method for the following initial external loads: (i) Axial compression combined with torsion (ii) Bending moment (iii) Axial compression combined with bending moment (iv) Periodic axial compression (v) Periodic bending moment. A simply supported cylindrical shell was tested under axial compression, bending moment and axial compression combined with bending moment. The results are in fair agreement with the present theoretical solution. The analytical study of the vibrations of cracked shells is carried out by introducing the modifications to the strain and kinetic energy functions expressed in terms of normal co-ordinates. It is shown that cracks reduce the natural frequency and change the nodal configuration associated with the lowest natural frequency. The results of the experiments are in excellent agreement with the theoretical predictions.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:737151
Date January 1970
CreatorsPalacios Gomez, Oscar F.
PublisherUniversity of Leicester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/2381/34811

Page generated in 0.0018 seconds