Return to search

Model based cross-directional monitoring and control of plastic film thickness

The main topics of this research are modelling, fault monitoring, and cross-directional control of a plastic film manufacturing process operated by DuPont Teijin Films Ltd. The developed model is of high dimension and built using the first-principles of chemical and mechanical engineering, such as equations for mass transfer, heat transfer, and the flow of viscous fluids in addition to empirical knowledge related to the behaviour of polymer. The model in turn provides a safe off-line platform for developing new cross-directional control and fault monitoring systems. As with other sheet-forming processes, such as papermaking and steel rolling, the plastic film manufacturing process employs large arrays of actuators spread across a continuously moving sheet to control the cross-directional profiles of key product properties. In plastic manufacturing, the main control property is finished product thickness profile as measured by a scanning gauge downstream from the actuators. The role of the cross-directional control system is to maintain the measured cross-directional profiles of plastic properties on target. The second part of this research develops a novel cross-directional controller, which is in turn demonstrated by application to the first-principles model. Fault monitoring systems can be broadly classified into 3 categories: model-based, data-driven, and knowledge-based. The third part of this research introduces a novel model-based fault monitoring system. The system is demonstrated by application to both the first-principles model and industrial data extracted from the real-life plant.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:668852
Date January 2010
CreatorsHur, Sung-ho
PublisherUniversity of Strathclyde
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25796

Page generated in 0.0113 seconds