Return to search

Applications of engineering for environmental sustainability

The approach to addressing many environmental problems requires a strong foundation in chemical science and engineering. A prime example is the developing subject of environmental engineering, where a multidisciplinary field is led by chemists and chemical engineers. This thesis presents a collection of research publications, which are of both an applied and multidisciplinary nature, primarily directed towards developing technology for energy and environmental sustainability. This has included the development of sensors for in-situ environmental monitoring and the application of nanocrystalline semiconductor photocatalysts for treatment of air, waste and potable waters. The development of laser processing methods for catalyst production and modification and the design and assessment of advanced photocatalytic reactors is also presented. Research on the reduction of carbon dioxide to fuel products is also considered. Real time in-situ sensors for environmental monitoring are an area that has seen a significant growth over the past twenty years. In this thesis, I detail my research into optical and electrochemical sensors for detection of organic chemicals and heavy metals in both the marine environment and in contaminated land. The other key research theme is the topic of water remediation using semiconductor photocatalysis. This has included treatment of industrial effluent, drinking water and water used in aquaculture. In particular, I have led research on the photocatalytic removal of cyanotoxins in water, a technique pioneered at RGU. These highly toxic chemical metabolites of cyanobacteria have been responsible for the deaths of animals and humans through ingestion of contaminated water.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:625479
Date January 2013
CreatorsRobertson, Peter K. J.
PublisherUniversity of Ulster
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0014 seconds