Performance and redundancy requirements imposed on state-of-the-art unmmaned combat aerial vehicles often lead to over-actuated systems with a mix of conventional and novel moment generators. Consequently, control allocation schemes have become a crucial part of the flight control architecture and their design is now a growing problem. This thesis presents a four control allocation scheme designed to meet multiple objectives and resolve objective conflicts by finding the ‘Pareto’ optimal solution, namely; Weighted Control Allocation, Minimax Control Allocation, Canonical Control Allocation and Classical. This is defined as a solution to the multi-objective optimisation problem which is non-dominated for all objectives. The scheme is applied to a six degrees of freedom nonlinear simulation of an aircraft equipped with conventional control surfaces as well as fluidic thrust vectoring and circulation control. The results indicate a perfect allocation of the total control demand onto the actuator suite.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:694970 |
Date | January 2012 |
Creators | Jamil, Ramey |
Contributors | Savvaris, Al |
Publisher | Cranfield University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://dspace.lib.cranfield.ac.uk/handle/1826/10735 |
Page generated in 0.002 seconds