Return to search

Supply chain management for the process industry

This thesis investigates some important problems in the supply chain management (SCM) for the process industry to fill the gap in the literature work, covering production planning and scheduling, production, distribution planning under uncertainty, multiobjective supply chain optimisation and water resources management in the water supply chain planning. To solve these problems, models and solution approaches are developed using mathematical programming, especially mixed-integer linear programming (MILP), techniques. First, the medium-term planning of continuous multiproduct plants with sequence-dependent changeovers is addressed. An MILP model is developed using Travelling Salesman Problem (TSP) classic formulation. A rolling horizon approach is also proposed for large instances. Compared with several literature models, the proposed models and approaches show significant computational advantage. Then, the short-term scheduling of batch multiproduct plants is considered. TSP-based formulation is adapted to model the sequence-dependent changeovers between product groups. An edible-oil deodoriser case study is investigated. Later, the proposed TSP-based formulation is incorporated into the supply chain planning with sequence-dependent changeovers and demand elasticity of price. Model predictive control (MPC) is applied to the production, distribution and inventory planning of supply chains under demand uncertainty. A multiobjective optimisation problem for the production, distribution and capacity planning of a global supply chain of agrochemicals is also addressed, considering cost, responsiveness and customer service level as objectives simultaneously. Both ε- constraint method and lexicographic minimax method are used to find the Pareto-optimal solutions Finally, the integrated water resources management in the water supply chain management is addressed, considering desalinated water, wastewater and reclaimed water, simultaneously. The optimal production, distribution and storage systems are determined by the proposed MILP model. Real cases of two Greek islands are studied.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:565470
Date January 2011
CreatorsLiu, S.
PublisherUniversity College London (University of London)
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://discovery.ucl.ac.uk/1331895/

Page generated in 0.0151 seconds