Return to search

Hydrogen production through steam electrolysis : model-based evaluation of an intermediate temperature solid oxide electrolysis cell

Steam electrolysis using a solid oxide electrolysis cell at elevated temperatures might offer a solution to high electrical energy consumption associated with conventional water electrolysers through a combination of favourable thermodynamics and kinetics. Although the solid oxide electrolysis cell has not. received significant attention over the past several decades and is yet to be commercialised, there has been an increased interest towards such a technology in recent years, aimed at reducing the cost of electrolytic hydrogen. Here, a one-dimensional dynamic model of a planar cathode-supported intermediate temperature solid oxide electrolysis cell stack has' been developed to investigate the potential for hydrogen production using such an electrolyser. Steady state simulations have indicated that the electrical energy consumption of the modelled stack is significantly lower than those of water electrolysers commercially available today. However, the dependence of stack temperature on the operating point has suggested that there is a need for temperature control. Analysis of a possible temperature control strategy by variation of the air flow rate through the stack has shown that the resulting changes in the convective heat transfer between the air flow and stack can alter the stack temperature. Furthermore, simulated transient responses indicated that manipulation of such an air flow rate can reduce stack temperature excursions during dynamic operation, suggesting that the p,oposed control strategy. has a good potential to prevent issues related to the stack temperature fluctuations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:486434
Date January 2008
CreatorsUdagawa, Jun
PublisherImperial College London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10044/1/8310

Page generated in 0.0133 seconds