Return to search

Real time monitoring and control for advanced microwave biodiesel reactor

Intelligent control techniques that emulate characteristics of biological system offer opportunities for creating control products with new capabilities. Intelligence is a mental quality that consists of the abilities to learn from experience, adapt to new situations. Artificial intelligence as the ability of a digital computer to perform tasks commonly associated with intelligent beings. The objective of this PhD studies is to undertake extensive research activities to simulate, design and implement various types of intelligent controllers such as error-base adaptive, conventional fuzzy logic, self-tuning fuzzy using Iterative Learning Control (ILC), inverse Adaptive NeuroFuzzy Inference System (ANFIS) controller, genetic-ANFIS controller, and adaptive PID controller. These techniques aimed to control and monitor in real time the performance of the microwave reactor to produce a biodiesel from any fats or waste cooking oil, with a potential of scale up system to be characterised for use in industrial environments. The other objective of the project is to use for the first time a microwave reactor to speed up the process of transesterification reaction in order to produce higher yield. Within the biodiesel production system the microwave reactor plays an important role. However, due to its non-linear nature then a complex control of the reactor is required as unsuccessful reaction step due to any disturbances or changes in the reaction conditions can have a significant impact on the transesterification reaction, leading to an incomplete conversion of waste oil to biodiesel. Ultimately this can lead to a reduction in product yield and quality, an issue which is further compounded by complex heat and mass transfer characteristics, frequent overshoot of temperature and oscillation of pressure within the reactor. Therefore, good control is essential for quality biodiesel production.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:590093
Date January 2013
CreatorsWali, Wasan A.
PublisherLiverpool John Moores University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.002 seconds