Gas turbines in power generation systems use both nickel and cobalt-based superalloys for vanes, blades, discs and combustion chamber components. Cobalt-based superalloys have the advantage over nickel based superalloys in that they have a higher thermal conductivity and hence a greater thermal shock resistance, a greater resistance to thermal fatigue and also a better corrosion resistance. However, in some applications coatings have to be applied to such alloys because of their poor oxidation resistance. The creep strength of cobalt-based superalloys depends primarily on solid solution strengthening and the interaction between the hard carbides and alloy defects, such as dislocations and stacking faults. There is a need to develop an understanding of the microstructural changes that occur in cobalt-based superalloys, with both time and temperature, for life prediction, refurbishment and failure investigations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:603100 |
Date | January 2007 |
Creators | Oates, David L. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/15182 |
Page generated in 0.0204 seconds